H field - meaning and definition. What is H field
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is H field - definition

SPATIAL DISTRIBUTION OF VECTORS ALLOWING THE CALCULATION OF THE MAGNETIC FORCE ON A TEST PARTICLE
Magnetic flux density; B-Field; B-field; Magnetic field density; Magnetic Field; Magnetic field strength; Magnetic force field; Nonlinear magnetic field; Magnetic fields; Magnetic Flux Density; H-field; Magnatic field; B-fields; Magnetic field lines; Magnetic field line; Magnetizing field; Auxiliary magnetic field; H field; Effective magnetic field; Potential magnetic field; Magnetic field intensity; Strong magnetic field; Magnetic field energy density; Magnetic Field Energy Density; Magnetic field vector; Magnetic lines of force; Amperes per meter; Amperes per metre; Applied magnetic field; Ampere per metre; Magnetic vector
  • [[Hans Christian Ørsted]], ''Der Geist in der Natur'', 1854
  • The shape of the magnetic field produced by a [[horseshoe magnet]] is revealed by the orientation of iron filings sprinkled on a piece of paper above the magnet.
  • A sketch of Earth's magnetic field representing the source of the field as a magnet. The south pole of the magnetic field is near the geographic north pole of the Earth.
  • A [[Solenoid]] with electric current running through it behaves like a magnet.
  • '''M'''}} inside and outside a cylindrical bar magnet.

Perez H. Field         
AMERICAN BUSINESSMAN AND POLITICIAN
User:Rhaegar I/sandbox/Perez H. Field; Perez Field
Perez Hastings Field (October 27, 1820 – August 30, 1872) was an American businessman and politician from New York.
Field (agriculture)         
  • A field of [[rapeseed]]s in [[Kärkölä]], Finland (2010)
  • [[Rotational grazing]] with pasture divided into paddocks, each grazed in turn for a short period
AREA OF LAND USED FOR AGRICULTURAL PURPOSES
Agricultural field; Cultivated field; Arable field; Paddock (field); Farm field; Field (farming)
In agriculture, a field is an area of land, enclosed or otherwise, used for agricultural purposes such as cultivating crops or as a paddock or other enclosure for livestock. A field may also be an area left to lie fallow or as arable land.
Field (physics)         
  • In [[classical gravitation]], mass is the source of an attractive [[gravitational field]] '''g'''.
  • Fields due to [[color charge]]s, like in [[quark]]s ('''G''' is the [[gluon field strength tensor]]). These are "colorless" combinations. '''Top:''' Color charge has "ternary neutral states" as well as binary neutrality (analogous to [[electric charge]]). '''Bottom:''' The quark/antiquark combinations.<ref name="Mc Graw Hill"/><ref name="M. Mansfield, C. O’Sullivan 2011"/>
  • isbn=0-691-03323-4}}</ref>
COMMON PHYSICS TERM FOR A PHYSICAL QUANTITY, REPRESENTED BY A NUMBER OR TENSOR, THAT HAS A VALUE FOR EACH POINT IN SPACE-TIME
Field theory (physics); Internal group; Physical field; Classical field; Field physics; Relativistic field theory; Spatial field
In physics, a field is a physical quantity, represented by a scalar, vector, or tensor, that has a value for each point in space and time. For example, on a weather map, the surface temperature is described by assigning a number to each point on the map; the temperature can be considered at a certain point in time or over some interval of time, to study the dynamics of temperature change.

Wikipedia

Magnetic field

A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents,: ch1  and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field.: ch13 : 278  A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, and are created by electric currents such as those used in electromagnets, and by electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function assigning a vector to each point of space, called a vector field.

In electromagnetics, the term "magnetic field" is used for two distinct but closely related vector fields denoted by the symbols B and H. In the International System of Units, the unit of H, magnetic field strength, is the ampere per meter (A/m).: 22  The unit of B, the magnetic flux density, is the tesla (in SI base units: kilogram per second2 per ampere),: 21  which is equivalent to newton per meter per ampere. H and B differ in how they account for magnetization. In vacuum, the two fields are related through the vacuum permeability, B / μ 0 = H {\displaystyle \mathbf {B} /\mu _{0}=\mathbf {H} } ; but in a magnetized material, the quantities on each side of this equation differ by the magnetization field of the material.

Magnetic fields are produced by moving electric charges and the intrinsic magnetic moments of elementary particles associated with a fundamental quantum property, their spin.: ch1  Magnetic fields and electric fields are interrelated and are both components of the electromagnetic force, one of the four fundamental forces of nature.

Magnetic fields are used throughout modern technology, particularly in electrical engineering and electromechanics. Rotating magnetic fields are used in both electric motors and generators. The interaction of magnetic fields in electric devices such as transformers is conceptualized and investigated as magnetic circuits. Magnetic forces give information about the charge carriers in a material through the Hall effect. The Earth produces its own magnetic field, which shields the Earth's ozone layer from the solar wind and is important in navigation using a compass.